RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2023 Volume 20, Issue 2, Pages 1125–1149 (Mi semr1633)

Discrete mathematics and mathematical cybernetics

$L_{\infty}$ norm minimization for nowhere-zero integer eigenvectors of the block graphs of Steiner triple systems and Johnson graphs

E. A. Bespalov, I. Yu. Mogilnykh, K. V. Vorob'ev

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Abstract: We study nowhere-zero integer eigenvectors of the block graphs of Steiner triple systems and the Johnson graphs. For the first eigenvalue we obtain the minimums of the $L_{\infty}$ norm for several infinite series of Johnson graphs, including $J(n,3)$ for all $n\geq 63$, as well as general upper and lower bounds. The minimization of the $L_{\infty}$ norm for nowhere-zero integer eigenvectors with the second eigenvalue of the block graph of a Steiner triple system $S$ is equivalent to finding the minimum nowhere-zero flow for Steiner triple system $S$. For the all Assmuss-Mattson Steiner triple systems of the orders greater or equal to $99$ we prove that the minimum flow is bounded above by $5$.

Keywords: Steiner triple system, flow, strongly regular graph, Johnson graph, Grassmann graph, eigenvalue.

UDC: 519.725

MSC: 05E30

Received April 3, 2023, published November 21, 2023

Language: English

DOI: doi.org/10.33048/semi.2023.20.070



© Steklov Math. Inst. of RAS, 2024