RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2023 Volume 20, Issue 2, Pages 1150–1159 (Mi semr1634)

Mathematical logic, algebra and number theory

Finite simple groups with two maximal subgroups of coprime orders

N. V. Maslovaab

a Krasovskii Institute of Mathematics and Mechanics UB RAS, S. Kovalevskaya Str., 16, 620108, Yekaterinburs, Russia
b Ural Federal University, Turgeneva Str., 4, 620075, Yekaterinburs, Russia

Abstract: In 1962, V. A. Belonogov proved that if a finite group $G$ contains two maximal subgroups of coprime orders, then either $G$ is one of known solvable groups or $G$ is simple. In this short note based on results by M. Liebeck and J. Saxl on odd order maximal subgroups in finite simple groups we determine possibilities for triples $(G,H,M)$, where $G$ is a finite nonabelian simple group, $H$ and $M$ are maximal subgroups of $G$ with $(|H|,|M|)=1$.

Keywords: finite group, simple group, maximal subgroup, subgroups of coprime orders.

UDC: 512.542

MSC: 20D60, 20D05

Received April 23, 2022, published December 12, 2023

Language: English

DOI: 10.33048/semi.2023.020.071



© Steklov Math. Inst. of RAS, 2024