RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2024 Volume 21, Issue 1, Pages 293–306 (Mi semr1685)

Geometry and topology

First $p$-Steklov eigenvalue under geodesic curvature flow

A. Sahaa, S. Azamib, S. K. Huia

a Department of Mathematics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
b Department of Pure Mathematics, Faculty of Sciences, Imam Khomeini International University, Qazvin, Iran

Abstract: We study the first nonzero $p$-Steklov eigenvalue on a two-dimensional compact Riemannian manifold with a smooth boundary along the geodesic curvature flow. We prove that the first nonzero $p$-Steklov eigenvalue is nondecreasing if the initial metric has positive geodesic curvature on boundary $\partial M$ and Gaussian curvature is identically equal to zero in $M$ along the un-normalized geodesic curvature flow. An eigenvalue estimation is also obtained along the normalized geodesic curvature flow.

Keywords: $p$-Steklov eigenvalue, geodesic curvature, geodesic curvature flow.

UDC: 514.7

MSC: 53E99, 58C40

Received February 4, 2023, published April 8, 2024

Language: English

DOI: doi.org/10.33048/semi.2024.21.022



© Steklov Math. Inst. of RAS, 2024