RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2024 Volume 21, Issue 2, Pages 540–554 (Mi semr1702)

Mathematical logic, algebra and number theory

On $3$-generated $6$-transposition groups

V. A. Afanasev, A. S. Mamontov

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Abstract: We study $6$-transposition groups, i.e. groups generated by a normal set of involutions $D$, such that the order of the product of any two elements from $D$ does not exceed $6$. We classify most of the groups generated by $3$ elements from $D$, two of which commute, and prove they are finite.

Keywords: $6$-transposition group.

UDC: 512.54

MSC: 20F05

Received April 1, 2024, published August 23, 2024

Language: English

DOI: doi.org/10.33048/semi.2024.21.039



© Steklov Math. Inst. of RAS, 2024