RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2024 Volume 21, Issue 2, Pages 1460–1472 (Mi semr1756)

Mathematical logic, algebra and number theory

Computable functionals of finite types in Montague semantics

A. S. Burnistova, A. I. Stukachevbc

a Mines Paris, PSL University, 60 bd Saint-Michel, 75006, Paris, France
b Novosibirsk State University, Pirogova str., 1, 630090, Novosibirsk, Russia
c Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Abstract: We consider a computable model of functionals of finite types used in Montague semantics to represent grammar categories in natural language sentences. The model is based on the notion of $\Sigma$-predicates of finite types in admissible sets introduced by Yu.L.Ershov.

Keywords: Montague semantics, functionals of finite types, generalized computability, $\Sigma$-predicates, $\Sigma$-operators.

UDC: 510.5

MSC: 03D65

Received September 10, 2024, published December 28, 2024

Language: English

DOI: 10.33048/semi.2024.21.093



© Steklov Math. Inst. of RAS, 2025