RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2024 Volume 21, Issue 2, Pages B46–B63 (Mi semr1773)

Collection of papers in honor of Sergey Godunov (Editors: Yu. L. Trakhinin, M.A. Shishlenin)

Application of linear fractional transformation in problems of localization of matrix spectra and roots of polynomials

E. A. Biberdorfa, L. Wangb

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, ul. Pirogova, 1 630090, Novosibirsk, Russia

Abstract: The paper investigates the possibilities of using linear fractional transformations in a number of problems that can be reduced to spectral dichotomy. More specifically, for the dichotomy of the imaginary axis, estimates are given for areas containing eigenvalues, methods for determining the absence of a matrix spectrum on a ray and a segment are described. A method for dividing a polynomial into two factors whose roots lie in the right and left half-planes is described and substantiated.

Keywords: spectrum dichotomy, linear fractional transformation, factorization of a polynomial.

UDC: 519.61

MSC: 65F99

Received November 1, 2024, published December 31, 2024

Language: English

DOI: 10.33048/semi.2024.21.B04



© Steklov Math. Inst. of RAS, 2025