RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2010 Volume 7, Pages 162–165 (Mi semr240)

Short communications

Dynamical contours and limits of stable autonomous motions

E. P. Volokitin, V. V. Ivanov, V. M. Cheresiz

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: It is shown that every dynamical contour can serve as the dynamical limit of a Lyapunov stable motion of an autonomous system. If the contour consists entirely of stationary points, the contour can be the limit of an asymptotically stable motion.

Keywords: autonomous systems, $\omega$-limit points, Lyapunov stability, asymptotic stability, dynamical contours, synchronous serpentine.

UDC: 517.93

MSC: 34C, 34D

Received August 17, 2010, published August 23, 2010



© Steklov Math. Inst. of RAS, 2024