RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2012 Volume 9, Pages 294–305 (Mi semr357)

This article is cited in 4 papers

Mathematical logic, algebra and number theory

A solution of Wielandt's problem for the sporadic groups

N. Ch. Manzaeva

Novosibirsk State University, Russia

Abstract: Let $\pi$ be a set of primes. A finite group $G$ is a $D_\pi$-group if all maximal $\pi$-subgroups of $G$ are conjugate. In 1979 H. Wielandt posed the following problem: in which finite simple groups every subgroup is a $D_\pi$-group? We solve this problem for the sporadic groups.

Keywords: finite group, sporadic group, $D_\pi$-group.

UDC: 512.542

MSC: 20D20

Received April 18, 2012, published June 16, 2012



© Steklov Math. Inst. of RAS, 2024