RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2013 Volume 10, Pages 200–204 (Mi semr408)

Mathematical logic, algebra and number theory

A characterization of the simple sporadic groups

A. K. Asboei

Department of Mathematics, Babol Education, Mazandaran, Iran

Abstract: Let $G$ be a finite group, $n_{p}(G)$ be the number of Sylow $p$–subgroup of $G$ and $t(2, G)$ be the maximal number of vertices in cocliques of the prime graph of $G$ containing 2. In this paper we prove that if $G$ is a centerless group with $t(2,G)\geq 2$ and $n_{p}(G)$=$n_{p}(S)$ for every prime $p\in \pi (G)$, where $S$ is the sporadic simple groups, then $S\leq G\leq $Aut$(S)$.

Keywords: Finite Group, simple group, Sylow subgroup.

UDC: 512.5

MSC: 13A99

Received October 28, 2012, published March 4, 2013

Language: English



© Steklov Math. Inst. of RAS, 2025