RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2013 Volume 10, Pages 443–449 (Mi semr424)

This article is cited in 1 paper

Discrete mathematics and mathematical cybernetics

Ranks of propelinear perfect binary codes

G. K. Guskova, I. Yu. Mogilnykhab, F. I. Solov'evaab

a Sobolev Institute of Mathematics, pr. ac. Koptyuga 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova street 2, 630090, Novosibirsk, Russia

Abstract: It is proven that for any numbers $n=2^m-1, m\geq 4$ and $r$, such that $n-\log(n+1)\leq r \leq n$ excluding $n=r=63$, $n=127$, $r\in\{126,127\}$ and $n=r=2047$ there exists a propelinear perfect binary code of length $n$ and rank $r$.

Keywords: propelinear perfect binary codes, rank, transitive codes.

UDC: 519.72

MSC: 94B25

Received October 26, 2012, published May 22, 2013

Language: English



© Steklov Math. Inst. of RAS, 2025