RUS
ENG
Full version
JOURNALS
// Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
// Archive
Sib. Èlektron. Mat. Izv.,
2013
Volume 10,
Pages
443–449
(Mi semr424)
This article is cited in
1
paper
Discrete mathematics and mathematical cybernetics
Ranks of propelinear perfect binary codes
G. K. Guskov
a
,
I. Yu. Mogilnykh
ab
,
F. I. Solov'eva
ab
a
Sobolev Institute of Mathematics, pr. ac. Koptyuga 4, 630090, Novosibirsk, Russia
b
Novosibirsk State University, Pirogova street 2, 630090, Novosibirsk, Russia
Abstract:
It is proven that for any numbers
$n=2^m-1, m\geq 4$
and
$r$
, such that
$n-\log(n+1)\leq r \leq n$
excluding
$n=r=63$
,
$n=127$
,
$r\in\{126,127\}$
and
$n=r=2047$
there exists a propelinear perfect binary code of length
$n$
and rank
$r$
.
Keywords:
propelinear perfect binary codes, rank, transitive codes.
UDC:
519.72
MSC:
94B25
Received
October 26, 2012
, published
May 22, 2013
Language:
English
Fulltext:
PDF file (505 kB)
References
Cited by
©
Steklov Math. Inst. of RAS
, 2025