RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2005 Volume 2, Pages 200–203 (Mi semr43)

Short communications

The orthogonal automorphism groups $\operatorname{Ortaut}A$ for $\mathbb Z_3$-orthograded quasimonocomposition algebras $A$ of dimension $9$ satisfying the conditions $\dim A_0=1$, $A_1A_2=0$

A. T. Gainov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: In [1], the author has found all orthogonal non-isomorphic $\mathbb Z_3$-orthograded quasimonocomposition algebras $A=A_0\oplus A_1\oplus A_2$ satisfying the conditions $\dim A=9$, $\dim A_0=1$, and $A_1A_2=0$. In this paper we construct their orthogonal automorphisms groups.

UDC: 512.554

MSC: 16P10, 16W20

Received October 7, 2005, published October 18, 2005



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025