RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2014 Volume 11, Pages 451–456 (Mi semr500)

This article is cited in 2 papers

Discrete mathematics and mathematical cybernetics

On the multidimensional permanent and $q$-ary designs

V. N. Potapovab

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova st., 2, 630090, Novosibirsk, Russia

Abstract: An $H(n,q,w,t)$ design is a collection of some $(n-w)$-faces of the hypercube $Q^n_q$ that perfectly pierce all $(n-t)$-faces $(n\geq w>t)$. An $A(n,q,w,t)$ design is a collection of some $(n-t)$-faces of $Q^n_q$ that perfectly cover all $(n-w)$-faces. The numbers of H-designs and A-designs are expressed in terms of the multidimensional permanent. Several constructions of H-designs and A-designs are given and the existence of $H(2^{t+1},s2^t,2^{t+1}-1,2^{t+1}-2)$ designs is proven for all $s,t\geq 1$.

Keywords: Steiner system, H-design, perfect matching, clique matching, MDS code, permanent.

UDC: 519.14

MSC: 05B05, 05C65

Received April 6, 2014, published June 16, 2014



© Steklov Math. Inst. of RAS, 2025