RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2014 Volume 11, Pages 745–751 (Mi semr519)

This article is cited in 1 paper

Discrete mathematics and mathematical cybernetics

On decomposition of a Boolean function into sum of bent functions

N. N. Tokarevaab

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova st., 2, 630090, Novosibirsk, Russia

Abstract: It is proved that every Boolean function in $n$ variables of a constant degree $d$, where $d\leq n/2$, $n$ is even, can be represented as the sum of constant number of bent functions in $n$ variables. It is shown that any cubic Boolean function in $8$ variables is the sum of not more than $4$ bent functions in $8$ variables.

Keywords: Boolean function; bent function; affine classification; bent decomposition.

UDC: 512.5

MSC: 13A99

Received August 14, 2014, published September 21, 2014

Language: English



© Steklov Math. Inst. of RAS, 2025