RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2014 Volume 11, Pages 906–914 (Mi semr535)

This article is cited in 3 papers

Discrete mathematics and mathematical cybernetics

Small cycles in the star graph

Elena V. Konstantinovaab, Alexey N. Medvedevac

a Sobolev Institute of Mathematics, 4, Koptyug av., 630090, Novosibirsk, Russia
b Novosibisk State University, 2, Pirogova st., 630090, Novosibirsk, Russia
c Central European University, Nador ut. 9, Budapest, 1051, Hungary

Abstract: The Star graph is the Cayley graph on the symmetric group $Sym_n$ generated by the set of transpositions $\{(1 2),(1 3),\ldots,(1 n)\}$. These graphs are bipartite, they do not contain odd cycles but contain all even cycles with a sole exception $4$-cycles. We characterize all distinct $6$- and $8$-cycles by their canonical forms as products of generating elements. The number of these cycles in the Star graph is also given.

Keywords: Cayley graphs; Star graph; cycle embedding; product of generating elements.

UDC: 519.1

MSC: 05C25

Received October 15, 2014, published December 3, 2014

Language: English



© Steklov Math. Inst. of RAS, 2025