RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2015 Volume 12, Pages 309–317 (Mi semr588)

Mathematical logic, algebra and number theory

On Sylow numbers of some finite groups

A. K. Asboeiab, A. K. Khalilc, R. Mohammadyarib

a Department of Mathematics, Farhangian University, Shariati Mazandaran, Iran
b Department of Mathematics, Buin Zahra Branch, Islamic Azad University, Buin Zahra, Iran
c Department of Mathematics, Farhangian University, Shahid Rajaee, Babol, Iran

Abstract: Let $G$ be a finite group, let $\pi (G)$ be the set of primes $p$ such that $G$ contains an element of order $p$, and let $n_{p}(G)$ be the number of Sylow $p$-subgroups of $G$, that is, $n_{p}(G)=|\mathrm{Syl}_{p}(G)|$. Set $\mathrm{NS} (G):=\{n_{p}(G)|~p\in \pi (G)\}$. In this paper, we will show that if $ |G|=|S| $ and $\mathrm{NS}(G)=\mathrm{NS}(S)$, where $S$ is one of the groups: the special projective linear groups $L_{3}(q)$, with $5\nmid (q-1)$, the projective special unitary groups $U_{3}(q)$, the sporadic simple groups, the alternating simple groups, and the symmetric groups of degree prime $r$, then $G$ is isomorphic to $S$. Furthermore, we will show that if $G$ is a finite centerless group and $\mathrm{NS}(G)=\mathrm{NS}(L_{2}(17))$, then $G$ is isomorphic to $L_{2}(17)$, and or $G$ is isomorphic to $\mathrm{Aut}(L_{2}(17)$.

Keywords: finite group, simple group, Sylow subgroup.

UDC: 512.542

MSC: 20D05, 20D20

Received December 10, 2014, published May 21, 2015

Language: English

DOI: 10.17377/semi.2015.12.025



© Steklov Math. Inst. of RAS, 2024