RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2015 Volume 12, Pages 795–801 (Mi semr628)

This article is cited in 2 papers

Mathematical logic, algebra and number theory

Automorphisms of a distance-regular graph with intersection array $\{100,66,1;1,33,100\}$

K. S. Efimova, A. A. Makhnevb

a Ural Federal University, str. Mira, 15, 620000, Ekaterinburg, Russia
b N.N. Krasovsky Institute of Mathematics and Meckhanics, str. S. Kovalevskoy, 4, 620990, Ekaterinburg, Russia

Abstract: A. A. Makhnev and D. V. Paduchikh have found intersection arrays of distance-regular graphs, in which neighborhoods of vertices are strongly-regular graphs with second eigenvalue $3$. A. A. Makhnev suggested the program to research of automorphisms of these distance-regular graphs. In this paper it is obtained possible orders and subgraphs of fixed points of automorphisms of a hypothetical distance-regular graph with intersection array $\{100,66,1;1,33,100\}$. In particular, this graph does not vertex symmetric.

Keywords: distance-regular graph, vertex symmetric graph.

UDC: 519.17

MSC: 05C25

Received October 27, 2015, published November 6, 2015

Language: English

DOI: 10.17377/semi.2015.12.065



© Steklov Math. Inst. of RAS, 2025