RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2015 Volume 12, Pages 854–861 (Mi semr634)

Geometry and topology

On axisymmetric Helfrich surfaces

S. M. Cherosovaa, D. A. Nogovitsyna, E. I. Shamaevab

a Ammosov Northeastern Federal University, Kulakovskogo str., 48 677000, Yakutsk, Russia
b Sobolev Institute of Mathemathics SB RAS, Acad. Koptyug avenue, 4, 630090, Novosibirsk, Russia

Abstract: In this paper we study axisymmetric Helfrich surfaces. We prove the convergence of the formal power series solution of the Euler–Lagrange equation for the Helfrich functional in a neighborhood of its singular point. We also prove the following inequality
$$ \lambda_v R^3+ (c^2+2\lambda_a)R^2-2cR+1\geqslant 0, $$
for a smooth axisymmetric Helfrich surfaces, that homeomorphic to a sphere, where $c$ is the spontaneous curvature of the surface, $\lambda_a$ and $\lambda_v$ are Lagrange multipliers, $R$ is the maximum distance between the axis of rotational symmetry and surface.

Keywords: Helfrich spheres of rotation, Delaunay surface of rotation, Willmore surface of rotation, Lobachevsky hyperbolic plane.

UDC: 514.752

MSC: 53A05

Received October 23, 2015, published November 24, 2015

Language: English

DOI: 10.17377/semi.2015.12.071



© Steklov Math. Inst. of RAS, 2025