RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2015 Volume 12, Pages 862–867 (Mi semr635)

Discrete mathematics and mathematical cybernetics

On antipodal properties for eigenfunctions of graphs

S. V. Avgustinovichab, E. V. Gorkunovba, Yu. D. Syominab

a Sobolev Institute of Mathemathics SB RAS, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova str., 2, 630090, Novosibirsk, Russia

Abstract: A graph $G=(V,E)$ of diameter $d$ is termed to be antipodal if for any vertex $x\in{V}$ there is precisely one another $x^\prime\in{V}$ such that $d(x,x^\prime)=d$. In addition, an antipodal graph is called rigid if for any pair of its antipodal vertices $x,x^\prime\in{V}$ and any third vertex $y\in{V}$ the equality $d(x,x^\prime)=d(x,y)+d(y,x^\prime)$ holds. In this paper eigenfunctions of rigid antipodal graphs are investigated. It is shown that every homogeneous eigenfunction of such a graph with odd diameter is determined uniquely from its values on vertices in two middle layers of the graph.

Keywords: antipodality, antipodal graph, eigenfunction of a graph.

UDC: 519.177

MSC: 05C50

Received October 21, 2015, published November 27, 2015

DOI: 10.17377/semi.2015.12.072



© Steklov Math. Inst. of RAS, 2024