RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2015 Volume 12, Pages 910–929 (Mi semr640)

Geometry and topology

A combinatorial model of the Lipschitz metric for surfaces with punctures

V. A. Shastin

Laboratory of Quantum Topology, Chelyabinsk State University, Brat'ev Kashirinykh street 129, Chelyabinsk 454001, Russia

Abstract: The zipped word length function introduced by Ivan Dynnikov in connection with the word problem in the mapping class groups of punctured surfaces is considered. We prove that the mapping class group with the metric determined by this function is quasi-isometric to the thick part of the Teichmüller space equipped with the Lipschitz metric.

Keywords: Mapping class group, Teichmüller space, Teichmüller metric, Thurston's asymmetric metric.

UDC: 515.162

MSC: 57M07

Received July 3, 2015, published December 3, 2015

DOI: 10.17377/semi.2015.12.077



© Steklov Math. Inst. of RAS, 2024