RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2015 Volume 12, Pages 930–939 (Mi semr641)

This article is cited in 1 paper

Mathematical logic, algebra and number theory

Automorphisms of a strongly regular graph with parameters $(532,156,30,52)$

A. A. Makhneva, M. M. Khamgokovab

a N.N. Krasovsky Institute of Mathematics and Meckhanics, str. S. Kovalevskoy, 4, 620990, Ekaterinburg, Russia
b Kabardino-Balkarian State University, Mira str., 16, 360000, Nalchik, Russia

Abstract: Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical strongly regular graph with parameters $(532,156,30,52)$. Let $\Gamma$ be a strongly regular graph with parameters $(532,156,30,52)$ and $G={\rm Aut}(\Gamma)$ be a nonsolvable group acting transitively on the vertex set of $\Gamma$. Then $\bar G=G/O_2(G)\cong J_1$, $S(G)=O_2(G)$ is an irreducible $F_2J_1$-module, $|O_2(G)|>2$ and $\bar G_a\cong L_2(11)$.

Keywords: strongly regular graph, automorphism group.

UDC: 519.17

MSC: 05C25

Received November 23, 2015, published December 4, 2015

DOI: 10.17377/semi.2015.12.078



© Steklov Math. Inst. of RAS, 2025