RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2016 Volume 13, Pages 111–121 (Mi semr659)

This article is cited in 1 paper

Mathematical logic, algebra and number theory

On recognition by spectrum of symmetric groups

I. B. Gorshkova, A. N. Grishkovb

a N. N. Krasovskii Institute of Mathematics and Mechanics, 16, S. Kovalevskaja St, 620990, Ekaterinburg, Russia
b Instituto de Matematica e Statistica, Universidade de Sao Paulo, R. do Matao, 1010 - Vila Universitaria, 05508-090, Sao Paulo, Brasil

Abstract: The spectrum of a group is the set of its element orders. A finite group $G$ is said to be recognizable by spectrum if every finite group with the same spectrum is isomorphic to $G$. We prove that if $n\in\{15,16,18,21,27\}$ then symmetric groups $Sym_n$ are recognizable by spectrum.

Keywords: finite group, simple group, symmetric group, spectrum of a group, recognizability by spectrum.

UDC: 512.542

MSC: 20D05

Received March 13, 2015, published February 26, 2016

Language: English

DOI: 10.17377/semi.2016.13.009



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024