RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2016 Volume 13, Pages 318–330 (Mi semr675)

This article is cited in 3 papers

Discrete mathematics and mathematical cybernetics

On enumeration of posets defined on finite set

V. I. Rodionov

Udmurt State University, ul. Universitetskaya, 1, 426034, Izhevsk, Russia

Abstract: If $T_0(n)$ is the number of partial orders (labeled $T_0$-topologies) defined on a finite set of $n$ elements then the formula hold
$$ T_0(n)=\sum\limits_{p_1+\ldots+p_k=n} (-1)^{n-k}\,\frac{n!}{p_1!\ldots p_k!}\,W(p_1,\ldots,p_k), $$
where the summation is over all ordered sets $(p_1,\ldots,p_k)$ of positive integers such that $p_1+\ldots+p_k=n$. The number $W(p_1,\ldots,p_k)$ is the number of partial orders of a special form. If $D_k$ is the dihedral group of order $2k$ then $W(p_{\pi(1)},\ldots,p_{\pi(k)})=W(p_1,\ldots,p_k)$ for all $\pi\in D_k$. We studied the complemented partial orders.

Keywords: graph enumeration, poset, finite topology.

UDC: 519.175

MSC: 05C30

Received April 15, 2016, published May 10, 2016

DOI: 10.17377/semi.2016.13.026



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025