RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2016 Volume 13, Pages 331–337 (Mi semr676)

Discrete mathematics and mathematical cybernetics

About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$

P. A. Gein

Ural Federal University, pr. Lenina, 51, 62083, Ekaterinburg, Russia

Abstract: Let $P(G, x)$ be the chromatic polynomial of a graph $G$. A graph $G$ is called chromatically unique if for any graph $H,\, P(G, x) = P(H, x)$ implies that $G$ and $H$ are isomorphic. In this parer we show that full tripartite graph $K(s, s - 1, s - k)$ is chromatically unique if $k\geq 1$ and $s - k\geq 2$.

Keywords: graph, chromatic polynomial, chromatic uniqueness, complete tripartite graph.

UDC: 519.175

MSC: 05C30

Received April 15, 2016, published May 10, 2016

DOI: 10.17377/semi.2016.13.027



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025