RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2016 Volume 13, Pages 467–477 (Mi semr690)

This article is cited in 8 papers

Mathematical logic, algebra and number theory

Hypercentral automorphisms of nil-triangular subalgebras in Chevalley algebras

V. M. Levchuk, A. V. Litavrin

Inst. Math. and Found. Inform. of Siberian Federal University, Pr. Svobodny, 79, 660041, Krasnoyarsk, Russia

Abstract: Let $N\Phi(K)$ be the nil-triangular subalgebra of the Chevalley algebra over an associative commutative ring $K$ with the identity associated with a root system $\Phi$. (All elements $e_r \in \Phi^+$ of Chevalley basis give its basis.) We study automorphisms of the Lie ring $N\Phi(K)$; this problem is closely related to the modeltheoretic study of Lie rings $N\Phi(K)$. Our main theorem shows that the largest height of hypercentral automorphisms of $N\Phi(K)$ is bounded by a constant, except orthogonal cases $B_n$ and $D_n$, when $2K\neq K$.

Keywords: Chevalley algebra, nil-triangular subalgebra, height of hypercentral automorphism.

UDC: 512.554

MSC: 16R40,17D99

Received February 26, 2016, published June 7, 2016

DOI: 10.17377/semi.2016.13.040



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024