RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2016 Volume 13, Pages 734–739 (Mi semr708)

This article is cited in 4 papers

Differentical equations, dynamical systems and optimal control

On the dynamics of a class of Kolmogorov systems

R. Boukoucha

Department of Technology, Faculty of Technology, University of Bejaia, 06000 Bejaia, Algeria

Abstract: In this paper we charaterize the integrability and the non-existence of limit cycles of Kolmogorov systems of the form
\begin{equation*} \left\{ \begin{array}{l} x^{\prime }=x\left( P\left( x,y\right) +\left( \frac{R\left( x,y\right) }{ S\left( x,y\right) }\right) ^{\lambda }\right) , \\ y^{\prime }=y\left( Q\left( x,y\right) +\left( \frac{R\left( x,y\right) }{ S\left( x,y\right) }\right) ^{\lambda }\right) , \end{array} \right. \end{equation*}
where $P\left( x,y\right) ,$ $Q\left( x,y\right) ,$ $R\left( x,y\right) ,$ $ S\left( x,y\right) $ are homogeneous polynomials of degree $n,$ $n,$ $m,$ $a$ respectively and $\lambda \in \mathbb{Q} ^{\ast }$. Concrete example exhibiting the applicability of our result is introduced.

Keywords: Kolmogorov system, first integral, periodic orbits, limit cycle.

UDC: 517.938

MSC: 34C05, 34C07, 37C27, 37K10

Received June 11, 2016, published September 20, 2016

Language: English

DOI: 10.17377/semi.2016.13.058



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025