RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2016 Volume 13, Pages 754–761 (Mi semr711)

This article is cited in 2 papers

Mathematical logic, algebra and number theory

Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$

I. N. Belousov, A. A. Makhnev

N.N. Krasovsky Institute of Mathematics and Meckhanics, str. S. Kovalevskoy, 16, 620990, Ekaterinburg, Russia

Abstract: We study automorphisms of a hypothetical distance-regular graph with intersection array $\{176,150,1;1,25,176\}$. It is proved that a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$ is not vertex-transitive.

Keywords: distance-regular graph, automorphism.

UDC: 519.17+512.54

MSC: 05C25

Received August 20, 2016, published September 28, 2016

DOI: 10.17377/semi.2016.13.061



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025