RUS
ENG
Full version
JOURNALS
// Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
// Archive
Sib. Èlektron. Mat. Izv.,
2016
Volume 13,
Pages
754–761
(Mi semr711)
This article is cited in
2
papers
Mathematical logic, algebra and number theory
Automorphisms of a distance-regular graph with intersection array
$\{176,150,1;1,25,176\}$
I. N. Belousov
,
A. A. Makhnev
N.N. Krasovsky Institute of Mathematics and Meckhanics, str. S. Kovalevskoy, 16, 620990, Ekaterinburg, Russia
Abstract:
We study automorphisms of a hypothetical distance-regular graph with intersection array
$\{176,150,1;1,25,176\}$
. It is proved that a distance-regular graph with intersection array
$\{176,150,1;1,25,176\}$
is not vertex-transitive.
Keywords:
distance-regular graph, automorphism.
UDC:
519.17
+
512.54
MSC:
05C25
Received
August 20, 2016
, published
September 28, 2016
DOI:
10.17377/semi.2016.13.061
Fulltext:
PDF file (158 kB)
References
Cited by
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2025