RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2016 Volume 13, Pages 1017–1025 (Mi semr730)

This article is cited in 3 papers

Geometry and topology

An explicit volume formula for the link $7_3^2 (\alpha, \alpha)$ cone-manifolds

Ji-Young Hama, J. Leea, A. Mednykhb, A. Rasskazovc

a Hongik University, 94 Wausan-ro, Mapo-gu, Seoul, 04066, Korea
b Sobolev Institute of Mathematics, 4, pr. Koptyuga, Novosibirsk, 630090, Russia
c Webster International University, 146 Moo 5, Tambon Sam Phraya, Cha-am, Phetchaburi, 76120, Thailand

Abstract: We calculate the volume of the $7_3^2$ link cone-manifolds using the Schläfli formula. As an application, we give the volume of the cyclic coverings branched over the link.

Keywords: hyperbolic orbifold, hyperbolic cone-manifold, volume, link $7_3^2$, orbifold covering, Riley–Mednykh polynomial.

UDC: 514.13

MSC: 57M27,57M25

Received July 26, 2016, published November 17, 2016

Language: English

DOI: 10.17377/semi.2016.13.080



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024