RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2016 Volume 13, Pages 1040–1051 (Mi semr733)

This article is cited in 3 papers

Mathematical logic, algebra and number theory

On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,22,243\}$

V. V. Bitkinaa, A. K. Gutnovaa, A. A. Makhnevb

a Severo-Osetinskii State University, str. Vatutina, 46, 362000, Vladikavkaz, Russia
b N.N. Krasovsky Institute of Mathematics and Meckhanics, str. S. Kovalevskoy, 16, 620990, Ekaterinburg, Russia

Abstract: It was proved that a distance-regular graph in which neighborhoods of vertices are strongly regular with parameters $(245,64,18,16)$ has intersection array $\{243,220,1;1,22,243\}$ or $\{243,220,1;1,4,243\}$. In this paper we found the automorphisms of a distance regular graph with intersection array $\{243,220,1;1,22,243\}$. It is proved that a vertex-transitive distance-regular graph with intersection array $\{243,220,1;1,22,243\}$ is the arc-transitive Mathon graph affording the group $L_2(3^5)$.

Keywords: distance-regular graph, automorphism.

UDC: 519.17+512.54

MSC: 05C25

Received November 9, 2016, published November 24, 2016

DOI: 10.17377/semi.2016.13.083



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025