RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2017 Volume 14, Pages 552–567 (Mi semr805)

Mathematical logic, algebra and number theory

On unit group of a finite local rings with 4-nilpotent radical of Jacobson

E. V. Zhuravlev

Altai State University, pr. Lenina, 61, 656049, Barnaul, Russia

Abstract: We describe the structure of the unit group of a commutative finite local rings $R$ of characteristic $p$ with Jacobson radical $J$ such that ${\dim_F J/J^2=2}$, ${\dim_F J^2/J^3=2}$, ${\dim_F J^3=1}$, $J^4=(0)$ and $F=R/J\cong GF(p^r)$, the finite field of $p^r$ elements.

Keywords: local rings, finite rings, unit group of a ring.

UDC: 512.55

MSC: 16P10, 16W20

Received April 8, 2017, published June 13, 2017

DOI: 10.17377/semi.2017.14.048



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025