RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2017 Volume 14, Pages 856–863 (Mi semr829)

Mathematical logic, algebra and number theory

Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$

A. A. Makhnevab, M. M. Isakovac, A. A. Tokbaevac

a Ural Federal University
b Krasovskii Institute of Mathematics and Mechanics, S.Kovalevskaya str., 16, 620990, Yekaterinburg, Russia
c Kabardino-Balkarian State University named after H.M. Berbekov, 173 Chernyshevsky Str., 360004, Nalchik, Russia

Abstract: A.A. Makhnev and M.S. Samoilenko found parameters of strongly regular graphs which can be local subgraphs in antipodal distance-regular graph of diameter $3$ with $\lambda=\mu$. It is suggested the programm of investigation antipodal distance-regular graph of diameter $3$ with $\lambda=\mu$ and local subgraphs having this parameters. It is consider parameters $(64,21,8,6)$ in this paper. It is proved that vertex-symmetric distance-regular graph with intersection array $\{64,42,1;1,21,64\}$ is arc-transitive with the automorphism group having socle $L_2(64)$ or $U_3(4)$.

Keywords: distance-regular graph, automorphism.

UDC: 519.17+512.54

MSC: 05C25

Received May 6, 2017, published August 25, 2017

DOI: 10.17377/semi.2017.14.072



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025