RUS
ENG
Full version
JOURNALS
// Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
// Archive
Sib. Èlektron. Mat. Izv.,
2017
Volume 14,
Pages
889–902
(Mi semr832)
This article is cited in
2
papers
Differentical equations, dynamical systems and optimal control
Dynamics of the cubic Darboux systems
E. P. Volokitin
ab
,
V. M. Cheresiz
a
a
Sobolev Institute of Mathematics, 4 Acad. Koptyug avenue, 630090 Novosibirsk Russia
b
Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk Russia
Abstract:
We study the local and global behavior of the trajectories of the differential systems of the form
$\dot x= x+p_3(x,y), \ \dot y=y+q_3(x,y)$
where
$p_3(x,y), q_3(x,y)$
are relatively prime homogeneous cubic polynomials.
Keywords:
polynomial systems, singular points, Poincaré equator, phase portraits.
UDC:
514.7
MSC:
34С05
Received
July 7, 2017
, published
September 14, 2017
DOI:
10.17377/semi.2017.14.075
Fulltext:
PDF file (269 kB)
References
Cited by
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2024