This article is cited in
1 paper
Differentical equations, dynamical systems and optimal control
Explicit expression for a first integral for some classes of two-dimensional differential systems
R. Boukoucha Department of Technology, Faculty of Technology,
University of Bejaia,
06000 Bejaia, Algeria
Abstract:
In this paper we are interested in studying
the existence of first integrals and then the trajectories for
classes of two-dimensional differential
systems of the forms
\begin{equation*}
\left\{
\begin{array}{l}
x^{\prime }=\frac{P\left( x,y\right) ^{\alpha }}{T\left( x,y\right) ^{\beta }
}+x\frac{R\left( x,y\right) ^{\gamma }}{S\left( x,y\right) ^{\delta }}, \\
y^{\prime }=\frac{Q\left( x,y\right) ^{\alpha }}{K\left( x,y\right) ^{\beta }
}+y\frac{R\left( x,y\right) ^{\gamma }}{S\left( x,y\right) ^{\delta }},
\end{array}
\right.
\end{equation*}
and
\begin{equation*}
\left\{
\begin{array}{l}
x^{\prime }=x\left( \frac{P\left( x,y\right) ^{\alpha }}{T\left(
x,y\right)
^{\beta }}+\frac{R\left( x,y\right) ^{\gamma }}{S\left( x,y\right) ^{\delta }
}\right) , \\
y^{\prime }=y\left( \frac{Q\left( x,y\right) ^{\alpha }}{K\left(
x,y\right)
^{\beta }}+\frac{R\left( x,y\right) ^{\gamma }}{S\left( x,y\right) ^{\delta }
}\right) ,
\end{array}
\right.
\end{equation*}
where
$a,$ $b,$ $n,$ $m$ are positive integers,
$\alpha ,$ $\beta ,$
$\gamma ,$ $\delta \in
\mathbb{Q}
$ and
$P\left( x,y\right) ,$ $Q\left( x,y\right) ,$ $R\left( x,y\right) ,$ $
T\left( x,y\right) ,$ $K\left( x,y\right) ,$ $S\left( x,y\right) $
are homogeneous polynomials of degree
$n,$ $n,$ $m,$ $a,$ $a,$ $b$
respectively. Concrete examples exhibiting the applicability of our
result are introduced.
Keywords:
autonomous differential system, Kolmogorov system, first integral, trajectories, Hilbert 16th problem.
UDC:
517.938
MSC: 34C05,
34C07,
37C27,
37K10 Received October 21, 2016, published
September 14, 2017
Language: English
DOI:
10.17377/semi.2017.14.076