RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2017 Volume 14, Pages 1011–1016 (Mi semr842)

This article is cited in 1 paper

Mathematical logic, algebra and number theory

On groups isospectral to the automorphism group of the second sporadic group of Janko

A. Kh. Zhurtov, M. Kh. Shermetova

Kabardino-Balkarian State University, str. Chernyshevsky, 173, 360004, Nalchik, Russia

Abstract: We prove that every finite group having the same set of element orders as $Aut(J_2)$ is isomorphic either to $Aut(J_2)$ or to an extension of a non-trivial $2$-group by $A_8$, or to some soluble group.

Keywords: isospectral groups, Frobenius group, sporadic groups of Janko, finite groups.

UDC: 512.542

MSC: 20D05

Received June 15, 2017, published October 6, 2017

DOI: 10.17377/semi.2017.14.085



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025