RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2017 Volume 14, Pages 1492–1504 (Mi semr888)

This article is cited in 2 papers

Discrete mathematics and mathematical cybernetics

About chromatic uniqueness of some complete tripartite graphs

P. A. Gein

Ural Federal University, pr. Lenina, 51, 62083, Ekaterinburg, Russia

Abstract: Let $P(G, x)$ be the chromatic polynomial of a graph $G$. A graph $G$ is called chromatically unique if for any graph $H,\, P(G, x) = P(H, x)$ implies that $G$ and $H$ are isomorphic. In this parer we show that full tripartite graph $K(n_1, n_2, n_3)$ is chromatically unique if $n_1 \geq n_2 \geq n_2 \geq n_3, n_1 - n_3 \leq$ and $n_1 + n_2 + n_3 \not \equiv 2 \mod{3}$.

Keywords: graph, chromatic polynomial, chromatic uniqueness, complete tripartite graph.

UDC: 519.174

MSC: 05C15

Received October 22, 2017, published December 29, 2017

DOI: 10.17377/semi.2017.14.129



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025