RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2017 Volume 14, Pages 1524–1532 (Mi semr890)

Mathematical logic, algebra and number theory

Rota–Baxter operators of weight zero on simple Jordan algebra of Clifford type

V. Yu. Gubarevab

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova str., 2, 630090, Novosibirsk, Russia

Abstract: It is proved that every Rota–Baxter operator of weight zero on the Jordan algebra of a nondegenerate bilinear symmetric form is nilpotent of index less or equal three. We found exact value of nilpotency index of Rota–Baxter operators of weight zero on simple Jordan algebra of Clifford type over the fields $\mathbb{R}$, $\mathbb{C}$, and $\mathbb{Z}_p$. For $\mathbb{Z}_p$, we essentially use the results from number theory concerned quadratic residues and Chevalley–Warning theorem.

Keywords: Rota–Baxter operator, Jordan algebra of Clifford type, quadratic residue, Chevalley–Warning theorem.

UDC: 512.554.7

MSC: 17C20

Received October 6, 2017, published December 29, 2017

Language: English

DOI: DOI 10.17377/semi.2017.14.131 DOI 10.17377/semi.2017.14.131



© Steklov Math. Inst. of RAS, 2025