RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2018 Volume 15, Pages 198–204 (Mi semr910)

This article is cited in 1 paper

Discrete mathematics and mathematical cybernetics

On automorphisms of a distance-regular graph with intersection array $\{119,100,15;1,20,105\}$

M. M. Isakovaa, A. A. Makhnevb

a Kabardino-Balkarian State University named after H.M. Berbekov, st. Chernyshevsky, 175, 360004, Nalchik, Russia
b N.N. Krasovsky Institute of Mathematics and Meckhanics, str. S. Kovalevskoy, 16, 620990, Ekaterinburg, Russia

Abstract: We study automorphisms of a hypothetical distance-regular graph with intersection array $\{119,100,15;1,20,105\}$. It is proved that a vertex-transitive distance-regular graph with intersection array $\{119,100,15;1,20,105\}$ has solvable automorphism group.

Keywords: distance-regular graph, automorphism.

UDC: 519.17

MSC: 05C25

Received January 10, 2017, published March 13, 2018

DOI: 10.17377/semi.2018.15.019



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025