RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2018 Volume 15, Pages 258–266 (Mi semr915)

This article is cited in 3 papers

Discrete mathematics and mathematical cybernetics

On the minimum supports of some eigenfunctions in the Doob graphs

E. A. Bespalov

Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia

Abstract: We prove that the minimum size of the support of an eigenfunction in the Doob graph $D(m,n)$ corresponding to the second largest eigenvalue is $6 \cdot 4^{2m+n-2}$, and obtain characterisation of all eigenfunctions with minimum support. Similar results, with the minimum support size $2^{2m+n}$, are obtained for the minimum eigenvalue of $D(m,n)$.

Keywords: eigenfunction, minimum support, Doob graph.

UDC: 519.1

MSC: 05B30

Received December 28, 2017, published March 19, 2018

Language: English

DOI: 10.17377/semi.2018.15.024



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024