RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2018 Volume 15, Pages 603–611 (Mi semr939)

This article is cited in 1 paper

Discrete mathematics and mathematical cybernetics

Automorphisms of graph with intersection array $\{289,216,1;1,72,289\}$

A. A. Makhnevab, M. P. Golubyatnikovb

a Krasovskii Institute of Mathematics and Mechanics, 16 S.Kovalevskaya Str., 620990, Yekaterinburg, Russia
b 620990, Yekaterinburg, Russia, Ural Federal University

Abstract: Prime orders automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a distance-regular graph with intersection array $\{289,216,1;1, 72,289\}$. Let nonsolvable automorphism group $G$ acts transitively on the vertex set of distance-regular graph $\Gamma$ with intersection array $\{289,216,1;1, 72,289\}$, $\bar T$ be a socle of $\bar G=G/S(G)$. Then either $\bar T\cong L_2(289)$ and $\Gamma$ is the Mathon graph or $\bar T\cong A_{29}$.

Keywords: distance-regular graph, automorphism.

UDC: 519.17+512.54

MSC: 05C25

Received April 10, 2018, published May 18, 2018

DOI: 10.17377/semi.2018.15.048



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024