RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2018 Volume 15, Pages 741–758 (Mi semr976)

This article is cited in 8 papers

Geometry and topology

The analytical method for embedding multidimensional pseudo-Euclidean geometries

V. A. Kyrov

Gorno-Altaiisk State University, st. Lenkina, 1, 649000, r. Altai, Gorno-Altaiisk, Russia

Abstract: As is known, the geometry of the local maximum mobility is an $n$-dimensional pseudo-Euclidean geometry. In this paper, we find all the $(n+1)$-dimensional geometries of the local maximal mobility whose metric functions contain the metric function of pseudo-Euclidean geometry as an argument. Such geometries are: $(n+1)$-dimensional pseudo-Euclidean geometry, $(n+1)$-dimensional special extension of $n$-dimensional pseudo-Euclidean geometry, $(n+1)$-dimensional geometry of constant curvature on a pseudo sphere.

Keywords: pseudo-Euclidean geometry, functional equation, differential equation, metric function.

UDC: 514.74,517.977

MSC: 53D05,39B22

Received February 21, 2018, published July 5, 2018

DOI: 10.17377/semi.2018.15.060



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024