RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2018 Volume 15, Pages 1048–1064 (Mi semr979)

This article is cited in 2 papers

Mathematical logic, algebra and number theory

Defining relations and identities of finite-generated nilpotent algebra $R$ with condition $\dim R^{N}/R^{N+1} = 2$

E. P. Petrov

Altai State University, pr. Lenina, 61, 656049, Barnaul, Russia

Abstract: In this paper we describe defining relations of $s$-generated nilpotent algebra $R$ over arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$ for some natural number $N \geq 3$. It is proved that such algebra $R$ over a field of characteristic not two satisfies the standard identity of degree $N+2$ if $s\geq N$, or the standard identity of smaller degree than $N$ if $s < N$.

Keywords: defining relations, identities, nilpotent algebra.

UDC: 512.552.4

MSC: 16R10

Received June 1, 2018, published September 21, 2018

DOI: 10.17377/semi.2018.15.088



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024