RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2018 Volume 15, Pages 1237–1244 (Mi semr991)

This article is cited in 4 papers

Geometry and topology

Classification of low complexity knotoids

Ph. G. Korablevab, Y. K. Maya, V. V. Tarkaevab

a Chelyabinsk State University, Br. Kashirinykh str., 192, 454000, Chelyabinsk, Russia
b N.N. Krasovsky Institute of Mathematics and Meckhanics, str. S. Kovalevskoy, 4, 620990, Ekaterinburg, Russia

Abstract: As the main result of the paper we present the complete classification of all prime knotoids with positive height and at most 5 crossings. We prove that there exist exactly 31 knotoids of this type. The proof is based on the complete table of knots in the thickened torus and the correspondence between knotoids in the two dimensional sphere and knots in the thickened torus.

Keywords: knotoid, classification, crossing number, height of knotoid, table.

UDC: 515.162.8

MSC: 57M25

Received August 15, 2018, published October 23, 2018

DOI: 10.17377/semi.2018.15.100



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025