Abstract:
In this paper we study the properties of $\mathscr{P}$ generated spaces (by analogy with compactly generated). We prove that a regular Lindelöf generated space with uncountable dispersion character is resolvable. It is proved that Hausdorff hereditarily $L$-spaces are $L$-tight spaces which were defined by István Juhász, Jan van Mill in (Variations on countable tightness, arXiv:1702.03714v1). We also prove $\omega$-resolvability of regular $L$-tight space with uncountable dispersion character.