RUS  ENG
Full version
JOURNALS // SIAM Journal on Computing // Archive

SIAM J. Comput., 2012, Volume 41, Issue 6, Pages 1524–1557 (Mi siamc1)

This article is cited in 37 papers

On the hidden shifted power problem

J. Bourgaina, M. Z. Garaevb, S. V. Konyaginc, I. E. Shparlinskid

a Institute for Advanced Study, Princeton, NJ 08540, United States
b Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, Mexico
c Steklov Mathematical Institute, Moscow, 119991, Russian Federation
d Department of Computing, Macquarie University, Sydney, NSW 2109, Australia

Abstract: We consider the problem of recovering a hidden element $s$ of a finite field $\mathbb{F}_q$ of $q$ elements from queries to an oracle that for a given $x \in \mathbb{F}_q$ returns $(x+s)^e$ for a given divisor $e \mid q-1$. We use some techniques from additive combinatorics and analytic number theory that lead to more efficient algorithms than the naive interpolation algorithm; for example, they use substantially fewer queries to the oracle.

MSC: 11T06, 11Y16, 68Q25, 94A60

Received: 05.10.2011
Accepted: 24.08.2012

Language: English

DOI: 10.1137/110850414



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024