Abstract:
Let $G$ be a simply connected simple algebraic group over $\mathbb{C}$, $B$ and $B_-$ be two opposite Borel subgroups in $G$ and $W$ be the Weyl group. For $u$, $v\in W$, it is known that the coordinate ring ${\mathbb C}[G^{u,v}]$ of the double Bruhat cell $G^{u,v}=BuB\cap B_-vB_-$ is isomorphic to an upper cluster algebra $\bar{\mathcal{A}}(\mathbf{i})_{{\mathbb C}}$ and the generalized minors $\{\Delta(k;{\mathbf{i}})\}$ are the cluster variables belonging to a given initial seed in ${\mathbb C}[G^{u,v}]$ [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J.126 (2005), 1–52]. In the case $G={\rm SL}_{r+1}({\mathbb C})$, $v=e$ and some special $u\in W$, we shall describe the generalized minors $\{\Delta(k;{\mathbf{i}})\}$ as summations of monomial realizations of certain Demazure crystals.