RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2017 Volume 13, 070, 10 pp. (Mi sigma1270)

This article is cited in 2 papers

Restriction of Odd Degree Characters of $\mathfrak{S}_n$

Christine Bessenrodta, Eugenio Giannellib, Jørn B. Olssonc

a Institute for Algebra, Number Theory and Discrete Mathematics, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
b Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
c Department of Mathematical Sciences, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark

Abstract: Let $n$ and $k$ be natural numbers such that $2^k < n$. We study the restriction to $\mathfrak{S}_{n-2^k}$ of odd-degree irreducible characters of the symmetric group $\mathfrak{S}_n$. This analysis completes the study begun in [Ayyer A., Prasad A., Spallone S., Sém. Lothar. Combin. 75 (2015), Art. B75g, 13 pages] and recently developed in [Isaacs I.M., Navarro G., Olsson J.B., Tiep P.H., J. Algebra 478 (2017), 271–282].

Keywords: characters of symmetric groups; hooks in partitions.

MSC: 20C30; 05A17

Received: May 25, 2017; in final form August 30, 2017; Published online September 5, 2017

Language: English

DOI: 10.3842/SIGMA.2017.070



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024