RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2018 Volume 14, 127, 46 pp. (Mi sigma1426)

Parallels between Moduli of Quiver Representations and Vector Bundles over Curves

Victoria Hoskins

Freie Universität Berlin, Arnimallee 3, Raum 011, 14195 Berlin, Germany

Abstract: This is a review article exploring similarities between moduli of quiver representations and moduli of vector bundles over a smooth projective curve. After describing the basic properties of these moduli problems and constructions of their moduli spaces via geometric invariant theory and symplectic reduction, we introduce their hyperkähler analogues: moduli spaces of representations of a doubled quiver satisfying certain relations imposed by a moment map and moduli spaces of Higgs bundles. Finally, we survey a surprising link between the counts of absolutely indecomposable objects over finite fields and the Betti cohomology of these (complex) hyperkähler moduli spaces due to work of Crawley-Boevey and Van den Bergh and Hausel, Letellier and Rodriguez-Villegas in the quiver setting, and work of Schiffmann in the bundle setting.

Keywords: algebraic moduli problems; geometric invariant theory; representation theory of quivers; vector bundles and Higgs bundles on curves.

MSC: 14D20; 14L24; 16G20; 14H60

Received: September 25, 2018; in final form November 18, 2018; Published online December 4, 2018

Language: English

DOI: 10.3842/SIGMA.2018.127



Bibliographic databases:
ArXiv: 1809.05738


© Steklov Math. Inst. of RAS, 2024