RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2019 Volume 15, 013, 22 pp. (Mi sigma1449)

This article is cited in 3 papers

Block-Separation of Variables: a Form of Partial Separation for Natural Hamiltonians

Claudia Maria Chanu, Giovanni Rastelli

Dipartimento di Matematica, Università di Torino, Torino, via Carlo Alberto 10, Italy

Abstract: We study twisted products $H=\alpha^rH_r$ of natural autonomous Hamiltonians $H_r$, each one depending on a separate set, called here separate $r$-block, of variables. We show that, when the twist functions $\alpha^r$ are a row of the inverse of a block-Stäckel matrix, the dynamics of $H$ reduces to the dynamics of the $H_r$, modified by a scalar potential depending only on variables of the corresponding $r$-block. It is a kind of partial separation of variables. We characterize this block-separation in an invariant way by writing in block-form classical results of Stäckel separation of variables. We classify the block-separable coordinates of $\mathbb E^3$.

Keywords: Stäckel systems; partial separation of variables; position-dependent time parametrisation.

MSC: 70H05; 37J15; 70H06

Received: August 7, 2018; in final form February 14, 2019; Published online February 23, 2019

Language: English

DOI: 10.3842/SIGMA.2019.013



Bibliographic databases:
ArXiv: 1808.01889


© Steklov Math. Inst. of RAS, 2025