Abstract:
We give a criterion for complete reducibility of tensor product $V\otimes Z$ of two irreducible highest weight modules $V$ and $Z$ over a classical or quantum semi-simple group in terms of a contravariant symmetric bilinear form on $V\otimes Z$. This form is the product of the canonical contravariant forms on $V$ and $Z$. Then $V\otimes Z$ is completely reducible if and only if the form is non-degenerate when restricted to the sum of all highest weight submodules in $V\otimes Z$ or equivalently to the span of singular vectors.