RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2019 Volume 15, 047, 40 pp. (Mi sigma1483)

This article is cited in 2 papers

Rational KdV Potentials and Differential Galois Theory

Sonia Jiméneza, Juan J. Morales-Ruizb, Raquel Sánchez-Caucec, María-Ángeles Zurroc

a Junta de Castilla y León, Salamanca, Spain
b Departamento de Matemática Aplicada, E.T.S. Edificación, Universidad Politécnica de Madrid, Madrid, Spain
c Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid, Spain

Abstract: In this work, using differential Galois theory, we study the spectral problem of the one-dimensional Schrödinger equation for rational time dependent KdV potentials. In particular, we compute the fundamental matrices of the linear systems associated to the Schrödinger equation. Furthermore we prove the invariance of the Galois groups with respect to time, to generic values of the spectral parameter and to Darboux transformations.

Keywords: differential Galois theory, KdV hierarchy, Schrödinger operator, Darboux transformations, spectral curves, rational solitons.

MSC: 12H05, 35Q51, 37K10

Received: September 11, 2018; in final form May 29, 2019; Published online June 25, 2019

Language: English

DOI: 10.3842/SIGMA.2019.047



Bibliographic databases:
ArXiv: 1808.00743


© Steklov Math. Inst. of RAS, 2024