RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2007 Volume 3, 032, 13 pp. (Mi sigma158)

This article is cited in 4 papers

A Note on the Rotationally Symmetric $\mathrm{SO}(4)$ Euler Rigid Body

Gregorio Falqui

Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via R. Cozzi, 53, 20125 Milano, Italy

Abstract: We consider an $SO(4)$ Euler rigid body with two “inertia momenta” coinciding. We study it from the point of view of bihamiltonian geometry. We show how to algebraically integrate it by means of the method of separation of variables.

Keywords: Euler top; separation of variables; bihamiltonian manifolds.

MSC: 37K10; 70H20; 14H70

Received: November 15, 2006; in final form February 2, 2007; Published online February 26, 2007

Language: English

DOI: 10.3842/SIGMA.2007.032



Bibliographic databases:
ArXiv: math-ph/0611045


© Steklov Math. Inst. of RAS, 2025